www.stone-ideas.com

Wie und wie schnell Gletscher fließen: Eisdicke und Rauigkeit des Untergrunds sind entscheidende Faktoren

Der 79 N Gletschers, Grönland. Das Bild zeigt eine Zone mit hoher Fließgeschwindigkeit und mit hoher Gleitreibung. Foto: Julia Christmann, AWI

Computermodell eines Jülicher Forschers zeigt, dass Eismassen mit mehr als 1000 m Dicke sich auf einem Schmierfilm aus Wasser bewegen

Der Jülicher Physiker Bo Persson hat eine Theorie zum Fließen (Gleiten) von Gletschereis auf felsigem Boden vorgestellt. Sie beschreibt unter anderem den Einfluss, den wassergefüllte Hohlräume zwischen Eis und Untergrund auf die Gleitgeschwindigkeit haben. Glaziologen könnten mit Perssons Theorie künftig die Computermodelle verbessern, mit denen sie das Fließtempo und das Abschmelzen der Gletscher vorhersagen.

Bislang gab es einige offene Fragen. So war nicht genau bekannt, wie sich die Unebenheiten des Felsbettes auf die Reibung der darüber liegenden Eisschichten und damit auf das Fließen des Gletschers auswirken.

Bo Persson vom Jülicher Peter Grünberg Institut hat nun einen Beitrag zum grundlegenden Verständnis des Gleitvorgangs geliefert. Dabei nutzte er eine Theorie der Kontaktmechanik, die er selbst entwickelt und bereits erfolgreich angewendet hat. Zugleich berücksichtigte er Arbeiten anderer Wissenschaftler aus den 1970er-Jahren, die sich beispielsweise mit dem Phänomen der Regelation beschäftigt hatten: Aufgrund seiner besonderen chemischen Struktur kann Eis schmelzen, wenn sich der Druck darauf erhöht und wieder gefrieren, wenn der Druck abnimmt.

Besonders bedeutsam an dem neuen mathematischen Modell: „Es zeigt, dass Hohlräume entstehen, wenn Gletscher mit typischer Geschwindigkeit über den Untergrund gleiten“, so Persson. „Bei Gletschern, die 1000 m dick und mehr sind, wie etwa an den Polkappen, liegt die Temperatur des Eises am Gletscherboden am Schmelzpunkt. Grund dafür ist die geothermische Wärme aus dem Erdinneren, die nicht nach oben hin abgeleitet werden kann – das Eis ist zu dick. Dadurch füllen sich die Hohlräume mit Wasser. Das bildet nicht nur eine Art Schmierfilm zwischen Gletscher und Untergrund, wodurch sich die Reibung verringert, es presst gegen die darüber liegenden Eisschichten und trägt so einen Teil der Gletschermasse mit: der Gletscher gleitet schneller.“

Die Gleitgeschwindigkeit, die der Forscher mit seinem Modell berechnet hat, entspricht den Werten, die man in der Natur beobachtet. Das ist ein wichtiges Indiz dafür, dass Perssons Modell die Realität gut wiedergibt. Prinzipiell ist die Grenzfläche zwischen Eis und Felsboden für die Forschung nur schwer zugänglich, da der Gletscher darüber liegt.

Bei den Gletschern ist die Rauigkeit des Felsuntergrundes für das Phänomen der Regelation verantwortlich: Das wechselnde Schmelzen und Frieren des Eises beruht auf lokalen Druckschwankungen, die wiederum durch die Bodenunebenheiten hervorgerufen werden. Persson erläutert das Phänomen anhand einer Bodenwelle: „Der sich bewegende Gletscher drückt das Eis von einer Seite gegen diese Bodenwelle. Bei höherem Druck genügt jedoch schon eine geringere Temperatur als üblich, um die Kristallstruktur des Eises aufzubrechen und es somit zum Schmelzen zu bringen.“ Auf der anderen Seite der Bodenwelle sei der Druck des Gletschers dagegen herabgesetzt und der Schmelzpunkt des Eises erhöhe sich.

The Journal of Chemical Physics: „Ice friction: Glacier sliding on hard randomly rough bed surface, B.N.J. Persson, J. Chem. Phys. 149, 234701 (2018)http://dx.doi.org/10.1063/1.5055934

(07.01.2019)