www.stone-ideas.com

Metallosphaera sedula bevorzugt das Gestein von Meteoriten gegenüber solchem von der Erde

Der Meteorit von Krähenberg ging 1869 im heutigen Rheinland-Pfalz nieder. Foto: LoKiLeCh / <a href="https://commons.wikimedia.org/"target="_blank">Wikimedia Commons</a>

Der urzeitliche Mikroorganismus kann außerirdisches Material aufnehmen und verarbeiten, so Forscher der Universität Wien

Chemolithotrophe Mikroorganismen beziehen ihre Energie aus anorganischen Quellen. Die Erforschung der physiologischen Vorgänge dieser Organismen – die auf Meteoritengestein gezüchtet werden – ermöglicht neue Einblicke in das Potential außerirdischer Materialen als mögliche Nährstoff- und Energiequelle für Mikroorganismen der frühen Erde. Meteoriten haben eine Vielzahl von essentiellen Verbindungen geliefert, die die Evolution des Lebens, wie wir es auf der Erde kennen, vorangetrieben haben.

Ein internationales Team rund um Astrobiologin Tetyana Milojevic von der Universität Wien untersuchte die Physiologie und die metallmikrobielle Grenzfläche des extrem metallophilen Archaeons Metallosphaera sedula, das extraterrestrisches Material – in diesem Fall den Meteoriten Northwest Africa 1172 – besiedelt und damit interagiert. Die Nahrungsaufnahme von M. sedula ist eine wertvolle Informationsquelle für die Erforschung der außerirdischen bioanorganischen Chemie, die im Sonnensystem aufgetreten sein könnte.

Zellen von M. sedula sind in der Lage, das Meteoritengestein schneller zu kolonisieren als Gesteine irdischen Ursprungs. „Die Meteoriten-Fitness scheint für diesen uralten Mikroorganismus vorteilhafter zu sein als eine Diät mit terrestrischen Mineralen. Der Meteorit North West Africa 1172 enthält möglicherweise viel mehr Spurenmetalle als irdische Materialen und fördert so die Stoffwechselaktivität und das mikrobielle Wachstum von M. sedula in einem höheren Grad. Darüber hinaus könnte die Porosität des Meteoriten auch die überlegene Wachstumsrate von M. sedula erklären“, sagt Tetyana Milojevic.

Die Wissenschafter verfolgten den Transport von anorganischen Meteoritenbestandteilen in eine Mikrobenzelle und untersuchten die Eisen-Redox-Chemie. Dazu analysierten sie die Grenzfläche zwischen Meteorit und Mikrobe mit einer räumlichen Auflösung im Nanometerbereich. Eine Kombination von verschiedenen analytischen Spektroskopietechniken mit der Transmissionselektronenmikroskopie ermöglichte die Entdeckung von biogeochemischen Fingerabdrücken, die durch das Wachstum von M. sedula auf dem außerirdischen Gestein hinterlassen wurden.

„Unsere Forschung bestätigt die Fähigkeit von M. sedula, die Biotransformation von Meteoritenmineralien durchzuführen, entziffert mikrobielle Fingerabdrücke auf Meteoritenmaterial und liefert den nächsten Schritt zum einem tieferen Verständnis der Meteoritenbiogeochemie“, folgert Milojevic.

Tetyana Milojevic, Denise Kölbl, Ludovic Ferrière, Mihaela Albu, Adrienne Kish, Roberta Flemming, Christian Koeberl, Amir Blazevic, Ziga Zebec, Simon Rittmann, Christa Schleper, Marc Pignitter, Veronika Somoza, Mario Schimak, and Alexandra Rupert (2019) Exploring the microbial biotransformation of extraterrestrial material on nanometer scale.
DOI 10.1038/s41598-019-54482-7

(24.12.2019)